Hall Ticket Number:					
				20	

CE314(CEEL02) (R20)

B.TECH. DEGREE EXAMINATION, NOVEMBER-2024

Semester V [Third Year] (Regular & Supplementary)

		Semester v [Time Tear] (Regular & Supplementary)	
	ΑI	DVANCED ENVIRONMENTAL ENGINEERING	;
Γi	me: T	hree hours Maximum Mari	ks: 70
		Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$	
١.	Ans	wer the following:	
	(a)	What are the main changes that occur in the receiving	G 01
		stream when organic waste is discharged into it?	COI
	(b)	Determine self-purification constant, if deoxygenation	
		coefficient is 0.2/day & reaeration coefficient is	
	14111411	0.6/day.	CO ₁
	(c)	Name any two chemicals used for the removal of	
		phosphates from waste water.	COI
	(d)	Distinguish between adiabatic lapse rate & inversion.	CO ₂
	(e)	Define mixing height.	CO ₂
	(f)	Name the gases responsible for global warming.	CO ₂
	(g)	What are the two disadvantages of gravity settling	
		chambers?	CO ₃
	(h)	What is a scrubber?	CO3
	(i)	What are the permissible noise levels for residential	
		area?	CO3
	(j)	Which pollutants are released from the automobile	
		exhaust?	CO3
	(k)	What is a leachate?	CO4
	(1)	What is a hazardous waste?	CO4
	(m)	What do you understand by pyrolysis?	CO ₄
	(n)	List any two examples for reuse of solid waste.	CO ₄

UNIT-I

2. (a) Explain the factors influencing the self-purification of streams. (7M) CO1

(b) A municipal wastewater treatment plant effluent having a maximum flow rate of 13,500 m³/d, BOD₅ of 100 mg/l, DO concentration of 1 mg/l and temperature 25°C. The stream (u/s from the point of waste water discharge) is found to have a minimum flow rate of 0.6 m³/s, BOD₅ of 3 mg/l, DO concentration of 8.0 mg/l & temperature of 20°C. Complete mixing of the waste water & stream is almost instantaneous, and the velocity of mixture is 0.2 m/s. The deoxygenation constant and re-aeration constant are estimated to be 0.23/d and 0.46/d respectively, at 20°C. Determine the critical deficit and its location from the point of wastewater discharge. Saturation DO at 20°C may be taken as 9.17 mg/l.

(7M) CO1

(OR)

 (a) Explain biological nitrification and denitrification method of removal of nitrogen from waste water.

(7M) CO1

(b) With a neat diagram explain the working of rotating disc biological contactor.

(7M) CO1

UNIT - II

4. (a) Explain classification and types of air pollutants with examples.

(7M) CO2

(b) Discuss the effects of air pollution on human health.

(7M) CO2

(OR)

(a) Explain the causes and control measures of acid rains and ozone layer depletion.

(8M) CO2

(b) Explain plume behaviour under different environmental conditions.

(6M) CO2

UNIT - III

6. (a) Explain a dry cyclone with neat diagram. What are the dimensions of a standard cyclone, if the diameter of the cylindrical portion is 'd'.

(7M) CO3

(b) Determine the number of tubular ESPs required for removing 0.5 μm sized fly ash from a cement industry with a gas flow rate of 12 m³/sec for obtaining (i) 90 % efficiency & (ii) 99 % efficiency. Pilot plant studies showed that the drift velocity w = 2.0 x 10⁵ d m/sec. The diameter of the tubes may be assumed as 0.3 m and length as 5 m each.

(7M) CO3

(OR)

7. (a) Explain the causes and control measures of noise pollution. (7

(7M) CO3

(b) Explain the sources of automobile pollution.

(7M) CO3

UNIT-IV

8. (a) Explain classification and sources of solid waste.

(6M) CO4

(b) Summarise Indore and Bangalore methods of composting.

(8M) CO4

(OR)

Explain various methods adopted for the treatment of hazardous wastes.

CO4

CE314(CEEL02) (R20)

Hall Tic	ket Number: CE314(CEEL0	-
	\sim	
	CE314(CEEL0	2) (120)
		-, ()
1	B.TECH. DEGREE EXAMINATION, APRIL-201	24
	Semester V [Third Year] (Supplementary)	
A	ADVANCED ENVIRONMENTAL ENGINEERIN	VG
Time: T	hree hours Maximum I	Marks: 70
	Answer Question No.1 compulsorily. (14 x 1 =	= 14)
	Answer One Question from each unit. $(4 \times 14 = 1)$	= 56)
1. Ans	swer the following:	
(a)		CO1
(b)	If waste water is to be discharged into an inlar	nd
	stream, what are the permissible limits for BOI	05 CO1
	and suspended solids?	
(c)		CO1
(d)		CO2
(e)		CO2
(f)	What is temperature inversion?	CO2
(g)		CO3
(h)	[1] [1] [1] [1] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	CO3
(i)	Mention the purpose of settling chamber.	CO3
(j)	Write the limits for noise levels in commercial zon	
(k)		CO4
(1)	List sources of urban solid waste management.	CO4
(m)		CO4
(n)	List some disposal methods of hazardous was management.	te CO4
	UNIT – I	
2. (a) (b)		4) CO1
	· · · · · · · · · · · · · · · · · · ·	,

3.	(a)	Describe nitrogen removal by biological denitrification process.	(7M)	CO1
	(b)	[1] H.	(7M)	CO1
		UNIT – II		
4.	(a)	Explain natural and manmade sources of air pollution.	(7M)	CO2
	(b)	Describe plume behaviours in case of air pollution.	(7M)	CO2
		(OR)		
5.	(a)	Explain aerosols and gaseous pollutants in case of air pollution.	(7M)	CO2
	(b)	Explain effects of air pollutants on human health and on plants.	(7M)	CO2
		UNIT – III		
6.	(a)	Explain inertial separators and electrostatic precipitators with a neat sketch.	(7M)	CO3
	(b)		(7M)	CO3
		(OR)		
7.	(a)	Discuss briefly how you control automobile emissions.	(7M)	CO3
	(b)	Explain various factors affection control of noise pollution.	(7M)	CO3
		UNIT – IV		
8.	(a)	transportation of urban solid waste	(7M)	CO4
	(b)	management. Classify hazardous waste management.	(7M)	CO4

9. (a) Explain various treatment methods of disposal of urban solid waste management.
(b) Explain biological and thermal treatment of hazardous waste management.
(7M) CO4

CE314(CEEL02) (R20)

Ha	III Tic	ket Number:		
		CE314(CEEL02)	(R20)	
	рт			
	D . I	ECH. DEGREE EXAMINATION, DECEMBER-20	23	
		Semester V [Third Year] (Regular & Supplementary)		
	A	DVANCED ENVIRONMENTAL ENGINEERING	3	
Ti	me: T	Three hours Maximum Mar	ks: 70	
		Answer Question No.1 compulsorily. $(14 \times 1 = 14)$)	
		Answer One Question from each unit. $(4 \times 14 = 56)$		
1.	Ans	wer the following:		
	(a)	Define self-purification.	CO1	
	(b)	Differentiate flora and fauna.	CO ₁	
	(c)	Define activated sludge.	CO ₁	
	(d)	Mention the purpose of sequencing batch reactor.	CO ₂	
	(e)	List natural sources of air pollution.	CO ₂	
	(f)	What is temperature inversion?	CO ₂	
	(g)	Mention any two causes of acid rains.	CO3	
	(h)	State the purpose of scrubbers.	CO3	
	(i)	What are the pollutants that are released from the		
		exhaust of a petrol vehicle?	CO ₃	
	(j)	Write the limits for noise levels in commercial zone.	CO ₄	
	(k)	Define incineration.	CO ₄	
	(1)	List sources of urban solid waste management.	CO4	
	(m)		CO4	
	(n)	Differentiate solidification and stabilization.	CO4	
		UNIT – I		
2.	(a)	Explain various factors affecting self-		
		purification (7M)	COL	

(a) Explain various factors affecting self-purification. (7M) CO1
 (b) Describe Streeter-Phelps's dissolved oxygen model. (7M) CO1

3.	(a)	Describe nitrogen removal by biological nitrification process.	(7M)	COL
	(b)	Sketch and explain up flow anaerobic sludge blanket reactor.	(7M)	
		UNIT – II		
1.	(a)	Explain various sources and classification of air pollution.	(7M)	CO2
	(b)	Describe Gaussian dispersion model.	(7M)	
		(OR)		
5.	(a)	Explain primary and secondary pollutants in case of air pollution.	(7M)	CO2
	(b)	Explain Ozone depletion.	(7M)	
		UNIT – III		
5.	(a)	Explain various types of collection equipment in air pollution.	(7M)	CO3
	(b)	Explain various levels of noise and measurement of noise pollution.	(7M)	
		(OR)		
7.	(a)	Discuss briefly how you control automobile emissions.	(7M)	CO3
	(b)	What are the common sources of noise pollution? Explain.	(7M)	
		UNIT – IV		
3.	(a)	Explain various quantities and characteristics of urban solid waste management.	(7M)	CO4
	(b)	Classify hazardous waste management.		CO4
		(OR)		

9. (a) Explain various treatment methods of disposal of urban solid waste management. (7M) CO4

(b) Explain physical and chemical treatment of hazardous waste management. (7M) CO4

CE314(CEEL02) (R20)